Maximum likelihood estimation of Normal inverse Wishart distributed observations
Arguments
- xi_list
a list of length
N
whose elements are observed vectors of lengthd
of the mean parameters xi.- psi_list
a list of length
N
whose elements are observed vectors of lengthd
of the skew parameters psi.- S_list
a list of length
N
whose elements are observed variance-covariance matrices of dimensiond x d
.- doPlot
a logical flag indicating whether the algorithm progression should be plotted. Default is
TRUE
.
Examples
hyperG0 <- list()
hyperG0$b_xi <- c(0.3, -1.5)
hyperG0$b_psi <- c(0, 0)
hyperG0$kappa <- 0.001
hyperG0$D_xi <- 100
hyperG0$D_psi <- 100
hyperG0$nu <- 35
hyperG0$lambda <- diag(c(0.25,0.35))
xi_list <- list()
psi_list <- list()
S_list <- list()
for(k in 1:1000){
NNiW <- rNNiW(hyperG0, diagVar=FALSE)
xi_list[[k]] <- NNiW[["xi"]]
psi_list[[k]] <- NNiW[["psi"]]
S_list[[k]] <- NNiW[["S"]]
}
mle <- MLE_sNiW(xi_list, psi_list, S_list)
mle
#> $U_xi
#> [1] 0.3089257 -1.5028864
#>
#> $U_psi
#> [1] -0.01887220 -0.02505573
#>
#> $U_B
#> [,1] [,2]
#> [1,] 0.0099139800 0.0001949264
#> [2,] 0.0001949264 0.0096225162
#>
#> $U_df
#> [1] 36.01101
#>
#> $U_Sigma
#> [,1] [,2]
#> [1,] 0.25686401 -0.00211768
#> [2,] -0.00211768 0.35839375
#>