Skip to contents
-
DPMGibbsN()
- Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
-
DPMGibbsN_SeqPrior()
- Slice Sampling of Dirichlet Process Mixture of Gaussian distributions
-
DPMGibbsN_parallel()
- Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
-
DPMGibbsSkewN()
- Slice Sampling of Dirichlet Process Mixture of skew normal distributions
-
DPMGibbsSkewN_parallel()
- Parallel Implementation of Slice Sampling of Dirichlet Process Mixture of skew normal distributions
-
DPMGibbsSkewT()
- Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
-
DPMGibbsSkewT_SeqPrior()
- Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
-
DPMGibbsSkewT_SeqPrior_parallel()
- Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
-
DPMGibbsSkewT_parallel()
- Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
-
DPMpost()
- Posterior estimation for Dirichlet process mixture of multivariate (potentially skew) distributions models
-
Flimited()
- Compute a limited F-measure
-
FmeasureC()
- C++ implementation of the F-measure computation
-
FmeasureC_no0()
- C++ implementation of the F-measure computation without the reference class 0
-
Fmeasure_costC()
- Multiple cost computations with the F-measure as the loss function
-
MAP_sNiW_mmEM()
MAP_sNiW_mmEM_weighted()
MAP_sNiW_mmEM_vague()
- EM MAP for mixture of sNiW
-
MLE_NiW_mmEM()
- EM MLE for mixture of NiW
-
MLE_gamma()
- MLE for Gamma distribution
-
MLE_sNiW()
- MLE for sNiW distributed observations
-
MLE_sNiW_mmEM()
- EM MLE for mixture of sNiW
-
NPflow-package
NPflow
- Bayesian Nonparametrics for Automatic Gating of Flow Cytometry data
-
NuMatParC()
- C++ implementation of similarity matrix computation using pre-computed distances
-
burn.DPMMclust()
- Burning MCMC iterations from a Dirichlet Process Mixture Model.
-
cluster_est_Fmeasure()
- Point estimate of the partition using the F-measure as the cost function.
-
cluster_est_Mbinder_norm()
- Point estimate of the partition using a modified Binder loss function
-
cluster_est_binder()
- Point estimate of the partition for the Binder loss function
-
cluster_est_pear()
- Gets a point estimate of the partition using posterior expected adjusted Rand index (PEAR)
-
cytoScatter()
- Scatterplot of flow cytometry data
-
evalClustLoss()
- ELoss of a partition point estimate compared to a gold standard
-
lgamma_mv()
- Multivariate log gamma function
-
print(<summaryDPMMclust>)
plot(<summaryDPMMclust>)
- Methods for a summary of a
DPMMclust
object
-
mmNiWpdf()
- multivariate Normal inverse Wishart probability density function for multiple inputs
-
mmNiWpdfC()
- C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs
-
mmsNiWlogpdf()
- Probability density function of multiple structured Normal inverse Wishart
-
mmsNiWpdfC()
- C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs
-
mmvnpdfC()
- C++ implementation of multivariate Normal probability density function for multiple inputs
-
mmvsnpdfC()
- C++ implementation of multivariate skew Normal probability density function for multiple inputs
-
mmvstpdfC()
- C++ implementation of multivariate Normal probability density function for multiple inputs
-
mmvtpdfC()
- C++ implementation of multivariate Normal probability density function for multiple inputs
-
mvnlikC()
- C++ implementation of multivariate Normal probability density function for multiple inputs
-
mvnpdf()
- multivariate-Normal probability density function
-
mvnpdfC()
- C++ implementation of multivariate normal probability density function for multiple inputs
-
mvsnlikC()
- C++ implementation of multivariate skew normal likelihood function for multiple inputs
-
mvsnpdf()
- multivariate Skew-Normal probability density function
-
mvstlikC()
- C++ implementation of multivariate skew t likelihood function for multiple inputs
-
mvstpdf()
- multivariate skew-t probability density function
-
mvtpdf()
- multivariate Student's t-distribution probability density function
-
plot_ConvDPM()
- Convergence diagnostic plots
-
plot_DPM()
- Plot of a Dirichlet process mixture of gaussian distribution partition
-
plot_DPMsn()
- Plot of a Dirichlet process mixture of skew normal distribution partition
-
plot_DPMst()
- Plot of a Dirichlet process mixture of skew t-distribution partition
-
postProcess.DPMMclust()
- Post-processing Dirichlet Process Mixture Models results to get a mixture distribution of the posterior locations
-
priormix()
- Construction of an Empirical based prior
-
rCRP()
- Generating cluster data from the Chinese Restaurant Process
-
sample_alpha()
- Sampler for the concentration parameter of a Dirichlet process
-
similarityMat()
- Computes the co-clustering (or similarity) matrix
-
similarityMatC()
- C++ implementation
-
similarityMat_nocostC()
- C++ implementation
-
summary(<DPMMclust>)
- Summarizing Dirichlet Process Mixture Models
-
vclust2mcoclustC()
- C++ implementation