Skip to contents

All functions

DPMGibbsN()
Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
DPMGibbsN_SeqPrior()
Slice Sampling of Dirichlet Process Mixture of Gaussian distributions
DPMGibbsN_parallel()
Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
DPMGibbsSkewN()
Slice Sampling of Dirichlet Process Mixture of skew normal distributions
DPMGibbsSkewN_parallel()
Parallel Implementation of Slice Sampling of Dirichlet Process Mixture of skew normal distributions
DPMGibbsSkewT()
Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
DPMGibbsSkewT_SeqPrior()
Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
DPMGibbsSkewT_SeqPrior_parallel()
Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
DPMGibbsSkewT_parallel()
Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions
DPMpost()
Posterior estimation for Dirichlet process mixture of multivariate (potentially skew) distributions models
Flimited()
Compute a limited F-measure
FmeasureC()
C++ implementation of the F-measure computation
FmeasureC_no0()
C++ implementation of the F-measure computation without the reference class 0
Fmeasure_costC()
Multiple cost computations with the F-measure as the loss function
MAP_sNiW_mmEM() MAP_sNiW_mmEM_weighted() MAP_sNiW_mmEM_vague()
EM MAP for mixture of sNiW
MLE_NiW_mmEM()
EM MLE for mixture of NiW
MLE_gamma()
MLE for Gamma distribution
MLE_sNiW()
MLE for sNiW distributed observations
MLE_sNiW_mmEM()
EM MLE for mixture of sNiW
NPflow-package NPflow
Bayesian Nonparametrics for Automatic Gating of Flow Cytometry data
NuMatParC()
C++ implementation of similarity matrix computation using pre-computed distances
burn.DPMMclust()
Burning MCMC iterations from a Dirichlet Process Mixture Model.
cluster_est_Fmeasure()
Point estimate of the partition using the F-measure as the cost function.
cluster_est_Mbinder_norm()
Point estimate of the partition using a modified Binder loss function
cluster_est_binder()
Point estimate of the partition for the Binder loss function
cluster_est_pear()
Gets a point estimate of the partition using posterior expected adjusted Rand index (PEAR)
cytoScatter()
Scatterplot of flow cytometry data
evalClustLoss()
ELoss of a partition point estimate compared to a gold standard
lgamma_mv()
Multivariate log gamma function
print(<summaryDPMMclust>) plot(<summaryDPMMclust>)
Methods for a summary of a DPMMclust object
mmNiWpdf()
multivariate Normal inverse Wishart probability density function for multiple inputs
mmNiWpdfC()
C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs
mmsNiWlogpdf()
Probability density function of multiple structured Normal inverse Wishart
mmsNiWpdfC()
C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs
mmvnpdfC()
C++ implementation of multivariate Normal probability density function for multiple inputs
mmvsnpdfC()
C++ implementation of multivariate skew Normal probability density function for multiple inputs
mmvstpdfC()
C++ implementation of multivariate Normal probability density function for multiple inputs
mmvtpdfC()
C++ implementation of multivariate Normal probability density function for multiple inputs
mvnlikC()
C++ implementation of multivariate Normal probability density function for multiple inputs
mvnpdf()
multivariate-Normal probability density function
mvnpdfC()
C++ implementation of multivariate normal probability density function for multiple inputs
mvsnlikC()
C++ implementation of multivariate skew normal likelihood function for multiple inputs
mvsnpdf()
multivariate Skew-Normal probability density function
mvstlikC()
C++ implementation of multivariate skew t likelihood function for multiple inputs
mvstpdf()
multivariate skew-t probability density function
mvtpdf()
multivariate Student's t-distribution probability density function
plot_ConvDPM()
Convergence diagnostic plots
plot_DPM()
Plot of a Dirichlet process mixture of gaussian distribution partition
plot_DPMsn()
Plot of a Dirichlet process mixture of skew normal distribution partition
plot_DPMst()
Plot of a Dirichlet process mixture of skew t-distribution partition
postProcess.DPMMclust()
Post-processing Dirichlet Process Mixture Models results to get a mixture distribution of the posterior locations
priormix()
Construction of an Empirical based prior
rCRP()
Generating cluster data from the Chinese Restaurant Process
sample_alpha()
Sampler for the concentration parameter of a Dirichlet process
similarityMat()
Computes the co-clustering (or similarity) matrix
similarityMatC()
C++ implementation
similarityMat_nocostC()
C++ implementation
summary(<DPMMclust>)
Summarizing Dirichlet Process Mixture Models
vclust2mcoclustC()
C++ implementation