C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs
Source:R/RcppExports.R
mmNiWpdfC.Rd
C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs
Arguments
- Mu
data matrix of dimension
p x n
,p
being the dimension of the data and n the number of data points, where each column is an observed mean vector.- Sigma
list of length
n
of observed variance-covariance matrices, each of dimensionsp x p
.- U_Mu0
mean vectors matrix of dimension
p x K
,K
being the number of distributions for which the density probability has to be evaluated- U_Kappa0
vector of length
K
of scale parameters.- U_Nu0
vector of length
K
of degree of freedom parameters.- U_Sigma0
list of length
K
of variance-covariance matrices, each of dimensionsp x p
.- Log
logical flag for returning the log of the probability density function. Defaults is
TRUE
.
References
Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209>. <arXiv: 1702.04407>. https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209