Posterior estimation for Dirichlet process mixture of multivariate (potentially skew) distributions models
Source:R/DPMpost.R
DPMpost.Rd
Partially collapse slice Gibbs sampling for Dirichlet process mixture of multivariate normal, skew normal or skew t distributions.
Arguments
- data
data matrix
d x n
withd
dimensions in rows andn
observations in columns.- hyperG0
prior mixing distribution.
- a
shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is
0.0001
.- b
scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is
0.0001
. If0
, then the concentration is fixed set toa
.- N
number of MCMC iterations.
- doPlot
logical flag indicating whether to plot MCMC iteration or not. Default to
TRUE
.- nbclust_init
number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).
- plotevery
an integer indicating the interval between plotted iterations when
doPlot
isTRUE
.- diagVar
logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is
TRUE
(diagonal variance).- verbose
logical flag indicating whether partition info is written in the console at each MCMC iteration.
- distrib
the distribution used for the clustering. Current possibilities are
"gaussian"
,"skewnorm"
and"skewt"
.- ncores
number of cores to use.
- type_connec
The type of connection between the processors. Supported cluster types are
"SOCK"
,"FORK"
,"MPI"
, and"NWS"
. See alsomakeCluster
.- informPrior
an optional informative prior such as the approximation computed by
summary.DPMMclust
.- ...
additional arguments to be passed to
plot_DPM
. Only used ifdoPlot
isTRUE
.
Value
a object of class DPMclust
with the following attributes:
mcmc_partitions
:a list of length
N
. Each elementmcmc_partitions[n]
is a vector of lengthn
giving the partition of then
observations.alpha
:a vector of length
N
.cost[j]
is the cost associated to partitionc[[j]]
U_SS_list
:a list of length
N
containing the lists of sufficient statistics for all the mixture components at each MCMC iterationweights_list
:a list of length
N
containing the weights of each mixture component for each MCMC iterationslogposterior_list
:a list of length
N
containing the logposterior values at each MCMC iterationsdata
:the data matrix
d x n
withd
dimensions in rows andn
observations in columnsnb_mcmcit
:the number of MCMC iterations
clust_distrib
:the parametric distribution of the mixture component
hyperG0
:the prior on the cluster location
Details
This function is a wrapper around the following functions:
DPMGibbsN
, DPMGibbsN_parallel
,
DPMGibbsN_SeqPrior
, DPMGibbsSkewN
, DPMGibbsSkewN_parallel
,
DPMGibbsSkewT
, DPMGibbsSkewT_parallel
,
DPMGibbsSkewT_SeqPrior
, DPMGibbsSkewT_SeqPrior_parallel
.
References
Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 doi:10.1214/18-AOAS1209
Examples
#rm(list=ls())
set.seed(123)
# Exemple in 2 dimensions with skew-t distributions
# Generate data:
n <- 2000 # number of data points
d <- 2 # dimensions
ncl <- 4 # number of true clusters
sdev <- array(dim=c(d,d,ncl))
xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
psi <- matrix(nrow=d, ncol=4, c(0.3, -0.7, -0.8, 0, 0.3, -0.7, 0.2, 0.9))
nu <- c(100,25,8,5)
proba <- c(0.15, 0.05, 0.5, 0.3) # cluster frequencies
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.2))
sdev[, ,4] <- .3*diag(2)
c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
c[k] = which(rmultinom(n=1, size=1, prob=proba)!=0)
w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
(sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
}
# Define hyperprior
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3
if(interactive()){
# Plot data
cytoScatter(z)
# Estimate posterior
MCMCsample_st <- DPMpost(data=z, hyperG0=hyperG0, N=2000,
distrib="skewt",
gg.add=list(ggplot2::theme_bw(),
ggplot2::guides(shape=ggplot2::guide_legend(override.aes = list(fill="grey45"))))
)
s <- summary(MCMCsample_st, burnin = 1600, thin=5, lossFn = "Binder")
s
plot(s)
#plot(s, hm=TRUE) # this can take a few sec...
# more data plotting:
library(ggplot2)
p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
+ geom_point()
+ ggtitle("Unsupervised data")
+ xlab("D1")
+ ylab("D2")
+ theme_bw()
)
p
c2plot <- factor(c)
levels(c2plot) <- c("4", "1", "3", "2")
pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
+ geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
+ ggtitle("True clusters")
+ xlab("D1")
+ ylab("D2")
+ theme_bw()
+ scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22)))
)
pp
}
# Exemple in 2 dimensions with Gaussian distributions
set.seed(1234)
# Generate data
n <- 2000 # number of data points
d <- 2 # dimensions
ncl <- 4 # number of true clusters
m <- matrix(nrow=2, ncol=4, c(-1, 1, 1.5, 2, 2, -2, -1.5, -2)) # cluster means
sdev <- array(dim=c(2, 2, 4)) # cluster standard-deviations
sdev[, ,1] <- matrix(nrow=2, ncol=2, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=2, ncol=2, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=2, ncol=2, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)
proba <- c(0.15, 0.05, 0.5, 0.3) # cluster frequencies
c <- rep(0,n)
z <- matrix(0, nrow=2, ncol=n)
for(k in 1:n){
c[k] = which(rmultinom(n=1, size=1, prob=proba)!=0)
z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(2, mean = 0, sd = 1), nrow=2, ncol=1)
}
# Define hyperprior
hyperG0 <- list()
hyperG0[["mu"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["nu"]] <- d+2
hyperG0[["lambda"]] <- diag(d)
if(interactive()){
# Plot data
cytoScatter(z)
# Estimate posterior
MCMCsample_n <- DPMpost(data=z, hyperG0=hyperG0, N=2000,
distrib="gaussian", diagVar=FALSE,
gg.add=list(ggplot2::theme_bw(),
ggplot2::guides(shape=ggplot2::guide_legend(override.aes = list(fill="grey45"))))
)
s <- summary(MCMCsample_n, burnin = 1500, thin=5, lossFn = "Binder")
s
plot(s)
#plot(s, hm=TRUE) # this can take a few sec...
# more data plotting:
library(ggplot2)
p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
+ geom_point()
+ ggtitle("Unsupervised data")
+ xlab("D1")
+ ylab("D2")
+ theme_bw()
)
p
c2plot <- factor(c)
levels(c2plot) <- c("4", "1", "3", "2")
pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
+ geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
#+ ggtitle("Slightly overlapping skew-normal simulation\n")
+ xlab("D1")
+ ylab("D2")
+ theme_bw()
+ scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22)))
+ ggtitle("True clusters")
)
pp
}