Plotting function for exploring the fitness of the mixed modeling used in TcGSA
Source:R/plotFit.GS.R
plotFit.GS.RdThis function plots graphs informing on the fit of the mixed modeling of the gene expression performed in TcGSA, for 1 or several gene sets.
Arguments
- x
a tcgsa object for
clustTrend, or a ClusteredTrends object forprint.ClusteredTrendsandplot.ClusteredTrends.- expr
a matrix or dataframe of gene expression. Its dimension are \(n\)x\(p\), with the \(p\) samples in column and the \(n\) genes in row.
- design
a matrix or dataframe containing the experimental variables that used in the model, namely
subject_name,time_name, andcovariates_fixedandtime_covariatesif applicable. Its dimension are \(p\)x\(m\) and its row are is in the same order as the columns ofexpr.- subject_name
the name of the factor variable from
designthat contains the information on the repetition units used in the mixed model, such as the patient identifiers for instance. Default is'Patient_ID'. See Details.- time_name
the name of a numeric variable from
designthat contains the information on the time replicates (the time points at which gene expression was measured). Default is'TimePoint'. See Details.- colnames_ID
the name of the variable from
designthat contains the column names of theexprexpression data matrix. See Details.- plot_type
a character string indicating the type of plot to be drawn. The options are
'Fit','Residuals Obs','Residuals Est'or'Histogram Obs'.- GeneSetsList
a character string containing the names of the gene set whose fit is being checked. If several gene sets are being checked, can be a character list or vector of the names of those gene sets.
- color
a character string indicating which color scale should be used. One of the 3 :
'genes','time','subjects', otherwise, no coloring is used.- marginal_hist
a logical flag indicating whether marginal histograms should be drawn. Only used for
'Fit'plot type. Default is'TRUE'- gg.add
A list of instructions to add to the
ggplot2instructions. See+.gg. Default islist(theme()), which adds nothing to the plot.
References
Hejblum BP, Skinner J, Thiebaut R, (2015) Time-Course Gene Set Analysis for Longitudinal Gene Expression Data. PLOS Comput. Biol. 11(6):e1004310. doi: 10.1371/journal.pcbi.1004310
Examples
if(interactive()){
data(data_simu_TcGSA)
tcgsa_sim_1grp <- TcGSA.LR(expr=expr_1grp, gmt=gmt_sim, design=design,
subject_name="Patient_ID", time_name="TimePoint",
time_func="linear", crossedRandom=FALSE)
plotFit.GS(x=tcgsa_sim_1grp, expr=expr_1grp, design=design,
subject_name="Patient_ID", time_name="TimePoint",
colnames_ID="Sample_name",
plot_type="Residuals Obs",
GeneSetsList=c("Gene set 1", "Gene set 2", "Gene set 3",
"Gene set 4", "Gene set 5"),
color="genes", gg.add=list(guides(color=FALSE))
)
plotFit.GS(x=tcgsa_sim_1grp, expr=expr_1grp, design=design,
subject_name="Patient_ID", time_name="TimePoint",
colnames_ID="Sample_name",
plot_type="Histogram Obs",
GeneSetsList=c("Gene set 1", "Gene set 5"),
color="genes", gg.add=list(guides(fill=FALSE))
)
plotFit.GS(x=tcgsa_sim_1grp, expr=expr_1grp, design=design,
subject_name="Patient_ID", time_name="TimePoint",
colnames_ID="Sample_name",
plot_type="Histogram Obs",
GeneSetsList=c("Gene set 1", "Gene set 2", "Gene set 3",
"Gene set 4", "Gene set 5"),
color="genes")
}